38 research outputs found

    Relationship between Semi-Arid Rangelands Quality Parameters and Vegetation Indexes

    Get PDF
    A large portion of the sheep production systems in the semi-arid zone of Central Chile base their feeding on the rangelands, adjusting both the production cycle and the use of supplementary feed to the natural supply of fodder. In this way, knowledge of the rangeland quantity and quality at the farm level emerges as an essential input for the decision-making of feed management. The objective of the study was to relate the herbage quality parameters of the semi-arid zone rangeland with Vegetation Indices (VI) and to determine which vegetation index report the best results. Vegetative indexes were obtained from aerial images multispectral captured by a drone. During the 2018 growing season (Oct to Dec), in three farms of the semi-arid zone of Central Chile, three plots of exclusion (per farm) of 100 m2 each were installed and monitored. Samples were taken once a month to determine the contents of dry matter (DM), crude protein (CP), neutral detergent fiber (NDF), and acid detergent fiber (ADF) of rangeland herbage. Regressions were developed between the rangeland herbage quality parameters and the calculated VI. Most of the regressions obtained were significant (p \u3c 0.05). In DM, the index that presented the best R2 (0.84) was Plant Senescence Reflectance Index (PSRI). In CP, the highest value of R2 was only 0.38 for PSRI. For NDF, a maximum value of R2 of 0.56 was obtained using Red Edge Chlorophyll Index (CI red edge). Finally, for ADF, the highest value of R2 was 0.72 obtained in Green Normalized Difference Vegetation Index (GNDVI), Normalized Difference Vegetation Index (NDVI), Soil-Adjusted Vegetation Index (SAVI), and Green Chlorophyll Index (CI green)

    Gastrointestinal tract size, total-tract digestibility, and rumen microflora in different dairy cow genotypes

    Get PDF
    peer-reviewedThe superior milk production efficiency of Jersey (JE) and Jersey × Holstein-Friesian (JE × HF) cows compared with Holstein-Friesian (HF) has been widely published. The biological differences among dairy cow genotypes, which could contribute to the milk production efficiency differences, have not been as widely studied however. A series of component studies were conducted using cows sourced from a longer-term genotype comparison study (JE, JE × HF, and HF). The objectives were to (1) determine if differences exist among genotypes regarding gastrointestinal tract (GIT) weight, (2) assess and quantify whether the genotypes tested differ in their ability to digest perennial ryegrass, and (3) examine the relative abundance of specific rumen microbial populations potentially relating to feed digestibility. Over 3 yr, the GIT weight was obtained from 33 HF, 35 JE, and 27 JE × HF nonlactating cows postslaughter. During the dry period the cows were offered a perennial ryegrass silage diet at maintenance level. The unadjusted GIT weight was heavier for the HF than for JE and JE × HF. When expressed as a proportion of body weight (BW), JE and JE × HF had a heavier GIT weight than HF. In vivo digestibility was evaluated on 16 each of JE, JE × HF, and HF lactating dairy cows. Cows were individually stalled, allowing for the total collection of feces and were offered freshly cut grass twice daily. During this time, daily milk yield, BW, and dry matter intake (DMI) were greater for HF and JE × HF than for JE; milk fat and protein concentration ranked oppositely. Daily milk solids yield did not differ among the 3 genotypes. Intake capacity, expressed as DMI per BW, tended to be different among treatments, with JE having the greatest DMI per BW, HF the lowest, and JE × HF being intermediate. Production efficiency, expressed as milk solids per DMI, was higher for JE than HF and JE × HF. Digestive efficiency, expressed as digestibility of dry matter, organic matter, N, neutral detergent fiber, and acid detergent fiber, was higher for JE than HF. In grazing cows (n = 15 per genotype) samples of rumen fluid, collected using a transesophageal sampling device, were analyzed to determine the relative abundance of rumen microbial populations of cellulolytic bacteria, protozoa, and fungi. These are critically important for fermentation of feed into short-chain fatty acids. A decrease was observed in the relative abundance of Ruminococcus flavefaciens in the JE rumen compared with HF and JE × HF. We can deduce from this study that the JE genotype has greater digestibility and a different rumen microbial population than HF. Jersey and JE × HF cows had a proportionally greater GIT weight than HF. These differences are likely to contribute to the production efficiency differences among genotypes previously reported

    Taking the steps towards sustainable livestock: our multidisciplinary global farm platform journey

    Get PDF
    Implications The Global Farm Platform was conceived and established to explore multidisciplinary strategies for optimising the sustainability of ruminant livestock systems around the world. International sustainability issues are common, but the solutions are often region-specific; therefore, our farms, situated across all major agroclimatic zones, are a unique resource worldwide. Each farm is following ?steps to sustainable livestock? to improve their production system(s), thereby developing robust metrics to progress economic, environmental and social viability. The consortium works collaboratively to improve the sustainability of ruminants, which we argue are a vital component of global food systems, delivering both human and planetary health

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    CARMENES: high-resolution spectra and precise radial velocities in the red and infrared

    Get PDF
    SPIE Astronomical Telescopes + Instrumentation (2018, Austin, Texas, United States
    corecore